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Abstract 
 
Each control chart pattern (CCP) has its own geometric shape and various related features can represent this shape. 
The shape features can represent the main characteristics of the original data in a condensed form. Different patterns 
can, therefore, be efficiently discriminated based on these shape features extracted from the control chart plot. In this 
paper, a feature-based heuristic approach is proposed that can recognize nine main types of CCPs, including the 
mixture pattern. The important shape features are identified and extracted, and then, the heuristic in the form of a 
decision tree is developed based on discriminant analysis of the extracted shape features. 
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1. Introduction 
Quality has now become one of the principal business strategies and perhaps the single most important way to 
achieve business success in a highly competitive global market. In order to manufacture products with the desired 
quality, production processes need to be monitored for any unnatural deviation in the state of the process. Control 
chart pattern (CCP) recognition is one of the most important tools in statistical process control (SPC) to identify 
process problems. The observed variation of quality characteristics generally results from either natural variation 
(common cause) or specific variation (assignable causes due to materials, machines, operators etc.). Common causes 
are considered to be due to the inherent nature of normal process and assignable causes of variation occur when the 
process has been changed. Assignable causes result in the unnatural variation to the process, which should be 
identified and eliminated as soon as possible. A normal (NOR) pattern in X  chart is indicative that the process is 
operating under natural variation. In X charts, unnatural variations are signaled mainly by exhibition of eight types 
of unnatural patterns, e.g.  stratification (STA), systematic (SYS), cyclic (CYC), mixture (MIX), increasing trend 
(UT), decreasing trend (DT), upward shift (US) and downward shift (DS) [1], as shown in Fig. 1. All other patterns 
are either special forms of basic CCPs or mixed forms of two or more basic CCPs. Recognition of unnatural patterns 
is a crucial task in SPC for identifying underlying root causes. Traditionally, control chart patterns have been 
analyzed and interpreted manually. Over the years, many supplementary rules, like zone test or run rules have been 
developed to detect the CCPs [1, 2]. Artificial intelligence approaches, such as expert system, fuzzy logic and neural 
network have been introduced as pattern classifier or pattern recognizer. Several techniques have also been 
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developed in the knowledge-base design of the expert systems [3-5], such as template matching, statistical testing, 
run rules and heuristic algorithms. Some researchers [6, 7] have applied the concept of fuzzy sets and membership 
functions to detect unnatural patterns. Artificial neural network is the most popular pattern classifier as suggested by 
Hwarng and Hubele [8], Cheng [9] and Guh and Shiue [10]. Pham and Wani [11] and Gauri and Chakraborty [12] 
have demonstrated that each control chart pattern has its own geometric shape and various CCPs can be efficiently 
recognized using appropriately chosen shape features from the CCPs. In this paper, a feature-based heuristic 
approach is proposed that can recognize all the nine main types of CCPs including the mixture pattern. The 
important shape features are identified and extracted, and then, the heuristics in the form of a decision tree is 
developed based on the discriminant analysis of the extracted shape features. The recognition performance of the 
heuristic is extensively studied using simulated pattern data and the results show that it is promising for real time 
process application. 
 

               
      (a) Normal               (b) Stratification              (c) Systemetic                (d) Cyclic                       (e) Mixture 
 

                       
              (f)  Increasing trend    (g) Decreasing trend       (h) Upward shift          (i) Downward shift   
 

Figure 1: Nine types of basic CCPs 
 

2. Extraction of shape features  
For the control chart plot and extraction of the related features, a moving observation window of size N is 
considered here. Shape features of control chart patterns can be extracted from different considerations [13] and 
many of them may be highly correlated. However, a good CCP recognizer should be capable to differentiate patterns 
with high accuracy using a minimum number of features and the correlation among those features should be as low 
as possible. Lower is the association among the features, higher will be the prediction stability [14]. Keeping this in 
mind, a set of seven features which are having fairly low correlation among them is chosen here. All these features 
are extracted assuming that a sampling interval in the control chart plot is represented by a linear distance, 1σc = . 
These features along with the mathematical expressions for their extraction are enlisted below: 
a) Sign of slope of the least square (LS) line representing the overall pattern (SB): 
The SB can be viewed as a categorical variable, which is ‘0’ if the value of the expression, 
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b)  Ratio between variance of the data points (SD2) and mean sum of squares of errors (MSE) of the LS line 
representing the overall pattern (RVE): 
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c) Area between the overall pattern and the LS line per interval in terms of SD2 (ALSPI): 

21)]/SD[ALS/(NALSPI −= ; 1/22N
1i i 1)]/(N) yy ([SD −−∑= =                                                                 (2) 

where, ALS is the area between the pattern and fitted LS line. The value of ALS can be easily computed by 
summing the areas of the triangles and trapeziums that are formed by the LS line and overall pattern. 
d) Proportion of the sum of number of crossovers to mean line and LS line (PSMLSC): 
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where, 1Oi =  if 0;) yy )( yy ( 1ii <−− + otherwise, 0Oi =  and y is the mean value of N  data points, and 1Oi =′  
if 0) yy )( yy ( 1i1iii <′−′− ++ ; otherwise, 0Oi =′

 and iy′  is the least square estimate of ith
 data point. 

e) Range of slopes of straight lines passing through six pair-wise combinations of midpoints of four equal 
segments (SRANGE): 

=SRANGE maximum )(sjk −minimum )(sjk ; (j = 1,2,3;  k = 2,3,4; kj < )                                                            (4) 

The feature SRANGE is extracted after predefined segmentation of the observation window into four equal 
segments. The behavior of the process in a segment is represented by the midpoint of the segment. Then, six straight 

lines are drawn passing through the midpoints of these four segments in 42C ways. In the above equation, sjk   

represents the slope of the straight line passing through the midpoints of jth

 and kth segments. 
f) Ratio of mean sum of squares of errors of the LS line fitted to overall data and average MSE of the LS lines 

fitted to six subsets of N/2data points (REAE): 
/6]MSEMSE/[REAE kj, jk∑= ;     (j = 1,2,3;  k = 2,3,4;  kj < )                                                                     (5) 

The feature REAE is extracted after fitting the LS lines to the combination of N/2 data points obtained from the four 
segments in 6 ways. In the above equation, MSEjk 

is the mean sum of squares of errors of the LS line fitted to the 
observations in jth

 and kth segments. 
g) Sum of absolute slope difference between the LS line representing the overall pattern and the LS lines 

representing patterns within two criterion-based segments (SASDRE): 
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where, B is the absolute slope of the LS line representing the overall pattern and Bj is the slope of the LS line fitted 
to jth criterion-based segment. Here, the defined criterion is minimization of the pooled mean sum of squares of 
errors (PMSE) of the two LS lines fitted to the two segments. Assuming that at least 8 data points are required for 
fitting a LS line, the LS lines are fitted to all the possible two segments and the segmentation which leads to the 
minimum PMSE is chosen.   
Table 1 shows the values of pair-wise correlation coefficients among the selected seven features computed from a 
set of learning samples. The table reveals that the degree of association between the selected shape features is 
considerably low.  
 

Table 1: Pair-wise correlation coefficients between selected shape features 
Selected feature SB RVE ALSPI PSMLSC SRANGE REAE SASDPE 

SB 1.00 0.02 -0.00 0.24 -0.16 -0.09 -0.05 
RVE 0.02 1.00 -0.26 -0.34 0.02 0.16 -0.00 

ALSPI -0.00 -0.26 1.00 -0.03 -0.34 -0.05 -0.40 
PSMLSC 0.24 -0.34 -0.03 1.00 -0.43 -0.37 -0.19 
SRANGE -0.16 0.02 -0.34 -0.43 1.00 0.59 0.37 

REAE -0.09 0.16 -0.05 -0.37 0.59 1.00 0.13 
SASDPE -0.05 -0.00 -0.40 -0.19 0.37 0.13 1.00 

 
3. Generation of control chart patterns 
Since a large window size can decrease the recognition efficiency by increasing the time required to detect the 
patterns, an observation window with 32 data points is considered here. The equations along with the corresponding 
parameters used for simulating the nine basic CCPs are given in Table 2. The values of different parameters for the 
unnatural patterns are randomly varied in a uniform manner between the limits shown. A set of 9000 (1000×9) 
sample patterns are generated from 1000 series of standard normal variate. Multiple sets of learning samples as well 
as test samples are required to rigorously evaluate the recognition and generalization performance of the heuristic-
based CCP recognizer that is developed based on the selected set of shape features. In this paper, six sets of learning 
and six sets of test samples of size 9000 each are generated for the purpose of experimentation. Only difference 
between these twelve sets of sample patterns is in the random generation of standard normal variate and values of 
different pattern parameters within their respective limits. 
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4. Experimentation 
 In this paper, a feature-based heuristic (decision tree) that can recognize all the nine main types of CCPs including 
MIX pattern is developed using discriminant analysis (available in STATISTICA software) of the selected seven 
shape features. Tree-structured classification of discriminant-based univariate splits allows automatic selection of 
the ‘right-sized’ tree that has the optimal prediction accuracy. Discriminant-based univariate splits are computed 
using quadratic discriminant analysis as in QUEST (Quick, Unbiased, Efficient Statistical Tree). The procedures for 
the ‘right-sized’ tree selection are not foolproof, but at least, they take the subjective judgment out of the process of 
choosing the ‘right-sized’ tree and thus avoid ‘over fitting’ and ‘under fitting’ of the data. Discriminant analysis 
includes a number of innovative features for improving the reliability and efficiency of the classification tree that it 
computes. 
Each set of the learning samples is subjected to the classification tree analysis using discriminant analysis with the 
following parameters: (a) prior probabilities for different patterns: proportional to class size, (b) misclassification 
cost of a pattern: equal for all the patterns, (c) stopping rule: prune on misclassification error, (d) value of ‘n’ for 
‘Minimum n’ rule = 5, (e) value of δ for ‘δ standard error’ rule = 1.0, (f) P- level for split variable selection = 0.05.  
This results in six different classification trees giving six heuristic-based CCP recognizers. These recognizers are 
labelled as 1.1-1.6 in Table 3. The recognition performance of each heuristic-based recognizer is then evaluated 
using all the six sets of test samples. 
 

Table 2: Equations and parameters for  control chart pattern simulation 
CCP Pattern parameters Parameter values Pattern equation 

NOR 
• Mean (µ) 
• Standard deviation (σ) 

80 
5 

σrµy ii +=  

STA • Random noise (σ′) 0.2σ to 0.4σ σrµy ii ′+=  

SYS • Systematic departure (d) 1σ to 3σ i
ii 1)(dσrµy −×++=  

CYC 
• Amplitude (a) 
• Period (T) 

1.5σ to 2.5σ 
8 and 16 

i/T)asin(2σrµy ii π++=  

MIX 
• Process mean (m) 
• A random number (b) 

1.5σ to 2.5σ 
0 to 1 

m1)(σrµy w
ii −++=  

0w = if  0.4b < , 1w = if  0.4b ≥  

UT • Gradient (g) 0.05σ to 0.1σ igσrµy ii ++=  

DT • Gradient (g) −0.1σ to −0.05σ igσrµy ii ++=  

US 
• Shift magnitude (s) 
• Shift position (P) 

1.5σ to 2.5σ 
9, 17, 25 

ks;σrµy ii ++=  

1k =  if   Pi ≥ , else 0k =  

DS 
• Shift magnitude (s) 
• Shift position (P) 

−2.5σ to −1.5σ 
9, 17, 25 

ks;σrµy ii ++=  

1k =  if  Pi ≥ , else 0k =  
                           Note: =i  discrete time point at which the pattern is sampled (i = 1,2,3,…,32), 
                                     ri = random value of a standard normal variate at ith

  time point, and 
                                     yi = sample value at ith

 time point. 
 
5. Results and Discussions 
Learning and verification performances of the six shape feature-based heuristic are shown in Table 3. It is observed 
that the recognition performance is quite satisfactory. The overall mean percentage of correct recognition obtained 
by the recognizer at the training and verification (recall) phases are 93.96% and 92.97% respectively. It may be 
noted that the recognition performance at the verification phase is lower than that as achieved during the learning 
phase. The percentage of correct recognition (mean value) at the verification phase ranges from 92.53% to 93.84%. 
The best heuristic-based recognizer in terms of consistency of recognition performance is recognizer number 1.2, 
and its heuristic rules in the form of a classification tree are shown in Fig. 2. The confusion matrix is a table 
summarizing the tendency of the recognizer to classify a recognized pattern into a correct class or into any of the 
other eight possible (wrong) classes. The confusion matrix, as given in Table 4, provides the overall mean 
percentage for confusion among the learning samples for the six feature-based heuristics. It is observed that shift 
patterns are often interpreted as trend patterns and vice versa, and these patterns are the hardest to be classified 



92 
 

correctly. Stratification patterns are the easiest to be classified (100%), followed by systematic (99.00%), mixture 
(97.27%) and cyclic (96.24%) patterns. Normal patterns are often confused with shift, trend and cyclic patterns.  

Table 3: Learning and verification performances of the recognizers 
Recognizer 

number 
Learning phase Verification phase 

Number of 
splits in tree 

Correct 
classification 

(%) 

Correct classification (%) 
Mean Maximum Minimum Range 

1.1 32 93.94 92.53 94.89 91.07 3.82 
1.2 29 94.16 93.84 96.18 92.47 3.71 
1.3 26 93.83 92.99 94.67 91.29 3.38 
1.4 32 94.00 93.26 95.73 92.18 3.55 
1.5 31 93.96 92.67 95.04 91.14 3.90 
1.6 34 93.89 92.54 95.03 91.59 3.44 

Overall mean  93.96 92.97 Overall range 5.11 

 

 
 

Figure 2: Classification tree for recognition of control chart patterns 
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Table 4: Confusion matrix  
True pattern 

class 
Identified pattern class 

NOR STA SYS CYC  MIX  UT DT US DS 
NOR 91.80 0.47 0.63 1.10 0.03 1.83 1.37 1.60 1.17 
STA 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SYS 0.57 0.00 99.00 0.00 0.23 0.07 0.00 0.13 0.00 
CYC 2.00 0.00 0.00 96.24 0.10 0.33 0.50 0.10 0.73 
MIX 0.17 0.00 0.33 0.50 97.27 0.87 0.53 0.10 0.23 
UT 3.03 0.00 0.23 0.17 0.17 89.20 0.20 7.00 0.00 
DT 2.73 0.00 0.10 0.47 0.07 0.00 92.00 0.00 4.63 
US 0.80 0.00 0.07 0.13 0.07 8.37 0.00 90.50 0.06 
DS 2.10 0.00 0.07 2.03 0.07 0.00 6.10 0.00 89.63 

 
6. Conclusions 
A feature-based CCP recognizer in the form of a decision tree is developed based on seven extracted shape features 
from the CCPs. The features are extracted from an observation window of considerably smaller size and the 
developed recognizer can recognize all the nine most commonly observed CCPs including mixture pattern. Since the 
extraction of the features, as considered in this paper, does not require users’ input in any form, the CCP recognizer 
is fully automatic. In this paper, various features are extracted in such a way that their values become independent of 
the process mean and standard deviation. Thus, this feature-based CCP recognizer can be applicable to any 
manufacturing process. Simulation studies reveal that the performance of the developed CCP recognizer is quite 
promising. Future research should address the situations when multiple unnatural patterns exist concurrently (e.g. a 
trend with a cyclic behaviour). The discriminant analysis-based CCP recognizer can be linked with a Quality 
Information System (QIS) which, based on the identified abnormal patterns and pattern parameters, will identify the 
assignable causes for process variation. 
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